
T

J
a

b

c

d

a

A
R
R
3
A
A

K
B
M
T

1

t
r
(
s
b
M
m
b
d
i

a
t
1
m

(
(

0
d

The Journal of Systems and Software 85 (2012) 1188– 1197

Contents lists available at SciVerse ScienceDirect

The  Journal  of  Systems  and  Software

j ourna l ho me  page: www.elsev ier .com/ locate / j ss

hresholds  for  error  probability  measures  of  business  process  models

an  Mendlinga, Laura  Sánchez-Gonzálezb,∗, Félix  Garcíab, Marcello  La  Rosac,d

Wirtschaftsuniversität Wien, Augasse 2-6, 1090 Vienna, Austria
Alarcos Research Group, TSI Department, University of Castilla La Mancha, Paseo de la Universidad, no4, 13071 Ciudad Real, Spain
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
NICTA Queensland Lab, PO Box 6020, St Lucia, QLD 4067, Australia

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 26 July 2011
eceived in revised form
0 December 2011
ccepted 5 January 2012
vailable online 13 January 2012

eywords:
usiness process models
easures

a  b  s  t  r  a  c  t

The  quality  of conceptual  business  process  models  is highly  relevant  for  the  design  of  corresponding
information  systems.  In  particular,  a  precise  measurement  of  model  characteristics  can  be  beneficial
from  a  business  perspective,  helping  to  save  costs  thanks  to  early  error  detection.  This  is just  as  true  from
a software  engineering  point  of view.  In this  latter  case,  models  facilitate  stakeholder  communication  and
software  system  design.  Research  has  investigated  several  proposals  as regards  measures  for  business
process  models,  from  a rather  correlational  perspective.  This  is  helpful  for understanding,  for  example
size and  complexity  as  general  driving  forces  of  error  probability.  Yet,  design  decisions  usually  have
to build  on  thresholds,  which  can  reliably  indicate  that  a certain  counter-action  has  to  be  taken.  This
cannot be  achieved  only  by  providing  measures;  it  requires  a systematic  identification  of  effective  and
hresholds meaningful  thresholds.  In  this  paper,  we  derive  thresholds  for a set  of  structural  measures  for  predicting
errors  in  conceptual  process  models.  To  this  end,  we  use  a  collection  of  2000  business  process  models
from  practice  as  a means  of  determining  thresholds,  applying  an  adaptation  of  the  ROC  curve  method.
Furthermore,  an  extensive  validation  of  the  derived  thresholds  was  conducted  by  using  429  EPC  models
from an  Australian  financial  institution.  Finally,  significant  thresholds  were  adapted  to  refine  existing
modeling  guidelines  in a quantitative  way.
. Introduction

Conceptual models play an important role in information sys-
em design. It is well-known that design errors cause expensive
ework when they are discovered only in late phases of the project
Boehm, 1981). Conceptual models are typically used at an early
tage of a development project as a means of communication
etween different stakeholders and as a Computation Independent
odel (CIM) in model-driven architecture (Fouad et al., 2011). Such
odels help to identify inconsistent perceptions of the yet to be

uilt system and to specify a viable solution. The early resolution of
esign errors using conceptual models can thus lead to an increase

n quality of the resulting software product.
Measurement is of crucial importance in providing quality

ssurance of a software project. In this context, DeMarco states

hat “you cannot control what you cannot measure” (DeMarco,
982). Measures establish the foundation upon which the achieve-
ent of goals can be assessed (Basili and Dieter Rombach, 1988).
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Various approaches and concepts of measurement have been
applied to software engineering as a process, as well as to its inputs
and to its product (Fenton and Pfleeger, 1997). Moreover, empir-
ical connections between internal measures like code complexity
and external measures such as error probability have been stud-
ied already, as far back as in the early 1980s (Basili and Perricone,
1984). Nevertheless, most insights in this area report correlations or
regression models between internal and external measures. While
these statistics are informative to a software engineer in general,
they do not directly help in actual decision making. Design deci-
sions typically require a “yes” versus “no” assessment as to whether
a certain change will be made. For instance, a software engineer
might have to decide whether 500 lines of code are detrimental
enough to warrant the decomposition of a class into multiple sub-
classes. What is required in such a context is a threshold value,
which, if exceeded, indicates that a particular design action has to
be taken.

In this paper, measurement is applied for business process mod-
els, which are typically used in the early design phase of a software
project. A process model describes a set of activities and their

control flow as it is supposed to be supported by a dedicated
information system. Even though process modeling is one of the
most heavily used modeling paradigms (Davies et al., 2006) and
its importance for software quality has been widely recognized
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Moody, 2005), up until now there has been no common under-
tanding of threshold values that would indicate a bad process
odel. Against this background we provide the following contribu-

ions. Firstly, we use a collection of 2000 business process models
rom practice to determine threshold values for different mea-
ures. Some of the selected measures were adapted from software
ngineering to business process models, such as Control Flow Com-
lexity (CFC) (derived from Cyclomatic Complexity). Others were
pecifically defined for business process models, such as number of
tart or end events and Connector Mismatch. We  use an approach
or threshold extraction based on ROC curves. These curves have
lso been applied for the evaluation of object-oriented design qual-
ty such as in Shatnawi et al. (2010).  Secondly, we provide an
xtensive validation of the derived thresholds based on a case study
ith a large Australian financial institution. In this way, we  inform

mpirical research on process modeling. In specific terms, we refine
xisting process modeling guidelines such as Mendling et al. (2010)
ased on the thresholds obtained. Our experimental approach is not
pecific to business process modeling, and can be adapted for error
nalysis in system design in general.

The paper proceeds as follows. Section 2 provides an introduc-
ion to business process modeling with a focus on various measures
nd their empirical connection with quality aspects such as error
robability. Section 3 uses a methodology for threshold derivation.
urthermore, it describes the EPC process model sample we use for
ur experiment, along with the resulting thresholds. In Section 4
e validate our results using a sample of EPC process models from a

arge Australian financial institution. Section 5 discusses the impli-
ations from this research, in particular with respect to existing
rocess modeling guidelines. Section 6 concludes the paper with a
ummary and an outlook on future research.

. Background

This section provides an overview of business process modeling
nd corresponding measures. Section 2.1 introduces the essen-
ial elements of a business process model. Section 2.2 provides
heoretical arguments as to why certain process models are less
nderstandable and more error-prone. Section 2.3 describes mea-
ures that correlate with understanding and error probability.

.1. Business process models and errors

Business process models capture various aspects of a business
rocess. Typically, there is a strong emphasis on the control flow,
hich essentially relates to the order in which activities can be

xecuted. In this paper we use Event-driven Process Chains (EPCs)
o illustrate our argument. This choice is motivated purely by the
vailability to the authors of a large dataset of EPC models, which
as used to conduct the experiment. Nonetheless, the results of

his paper can easily be applied to other process modeling nota-
ions. EPCs define so-called functions for capturing activities of
he process, and events as pre- and post-conditions to them. As
ith other process modeling languages like UML  Activity Diagrams,
PMN or YAWL, they include so-called connectors for defining
omplex routing behavior (Keller et al., 1992; Mendling, 2008).
here are three types of connectors: XOR (exclusive branching and
erging), AND (concurrent branching and synchronization), and
R (inclusive branching and synchronization). XOR-splits define
ecision points whose subsequent branches can be merged using
n XOR-join. AND-splits introduce parallel execution that can be

ynchronized by downstream AND-joins. OR-splits activate one,
everal, or all subsequent branches based on conditions. They need
o be synchronized with OR-join elements, which are difficult to
mplement in the general case (Kindler, 2006; Mendling, 2008).
Fig. 1. Example of an EPC process model.

Fig. 1 illustrates the essential elements of an EPC business pro-
cess model. The process is triggered by a start event. Then, a decision
has to be made, yielding either a positive or a negative decision. For
a negative decision, we only take one branch and continue via the
XOR-join to a part of a process that is always taken. We  conduct
other work and reach an AND-join before the end event. In case of
a positive decision, we conduct work in concurrency. The OR-split
allows us to consider either one of the branches or both of them. If
both branches are taken, we  conduct work that can be considered
only for a positive decision. The AND-join then synchronizes both
branches.

The example of this process model also shows that a combina-
tion of different connectors can easily result in errors. The model
cannot always terminate properly. Whenever the OR-split activates
both branches, the AND-join can synchronize them and forward
control towards a good completion. In any other case, the execu-
tion gets stuck at the AND-join, because control from one of the
two  incoming branches, which would bring the model to comple-
tion, is missing. Such an error is called a deadlock. It has been found
that many process models in practice include such errors, and that
often about 20% of the models have deadlocks or other behavioral
problems (Mendling, 2009). Clearly, such deadlocks point to bad

design. If a business process model is used for communication pur-
poses and requirement analysis, a deadlock might lead to confusion
in the stakeholders consulting this model. In case the process model
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s meant to be automatically enacted by a workflow management
ystem, instances of this model can actually get stuck in the dead-
ocking state, meaning that such instances cannot further progress.
his in turn may  lead to an increased cost and time to complete such
nstances, since the process model needs first to be corrected and
hen re-enacted, or the deadlocking instance needs to be rectified
n the fly.

.2. Theoretical considerations on errors

Finding errors in a process model is not a trivial task. For some
lasses of process models, deadlocks and other problems can be
ound in an efficient way using the soundness criterion and Petri
et analysis techniques (van der Aalst et al., 2002; Fahland et al.,
011). There are also tools in existence which fix unsound nets
utomatically (Gambini et al., 2011). It is generally the case, though,
hat the reachability graph needs to be constructed; this is an NP-
omplete problem (Esparza, 1998). We  therefore have to consider
wo aspects when tracing back the reasons why errors occur in pro-
ess models (Reijers and Mendling, 2011; Gambini et al., 2011). First
f all, often behavioral errors cannot be discovered from the process
odel directly, since a combination of nodes may  be responsible

or that model to be unsound. Secondly, typically a considerable
ental effort is required when checking a process model for cor-

ectness due to the number of transitions per trace when looking
or errors.

Process models are efficient in representing the different deci-
ions and routing conditions throughout the progress of executing

 business process. In contrast to a reachability graph, they define
ehavior much more compactly. Research on visual programming

anguages emphasizes that a particular type of information is often
ighlighted at the expense of another one (Green, 1977). That
eans that there should be a fit between the task and the chosen

epresentation (Vessey, 1991). The reachability graph shows errors
ore explicitly, yet its size can be disproportionately large in com-

arison to the corresponding process model. A process model, in
ontrast, has to be analyzed carefully to detect errors.

Apart from all we have just said, it should be remarked that
umans possess only limited cognitive capabilities. Checking dif-

erent execution sequences of a process model is a hard mental
peration in terms of the cognitive dimension framework (Green
nd Petre, 1996). Once there are too many branches to be consid-
red, it is to be expected that the performance of a modeler will
ecrease because of the high cognitive load (Sweller, 2005). While
he modeling expertise of a modeler is definitely relevant (Reijers
nd Mendling, 2011), these theoretical considerations would lead
s to expect that, in general, large, complex models are more likely
o include errors than simple ones.

.3. Related work on process model measures

Several factors have been found to be relevant factors for process
odel understanding and error probability. They include model

urpose, problem domain, modeling notation, and layout (Ware
t al., 2002; Hahn and Kim, 1999; Agarwal et al., 1999; Recker and
reiling, 2007; Reijers and Mendling, 2011). In this paper, we  focus
n those factors that refer to the structure of a process model.

Research on process model measurement is inspired by prior
ork on software measures including lines of code, cyclomatic
umber, and object-oriented measures (McCabe, 1976; Chidamber
nd Kemerer, 1994; Fenton and Pfleeger, 1997). Early contribu-
ions in this area provide conceptual definitions of process model
easures (Lee and Yoon, 1992; Nissen, 1998; Morasca, 1999). In
he meantime, the focus of research is upon experiments and the
mpirical validation of measures. Cardoso reports upon the results
f an experiment to correlate process measures with the perceived
and Software 85 (2012) 1188– 1197

complexity of process models (Cardoso, 2006). A team of
researchers which includes Canfora, Rolón, and García correlate
understandability and maintainability with size, complexity, and
coupling of a process model (Canfora et al., 2005; Rolón Aguilar
et al., 2007). Further measures are defined based on cognitive con-
siderations (Vanderfeesten et al., 2008) and concepts of modularity
(Vanhatalo et al., 2007; van der Aalst and Lassen, 2008). A set of
measures is validated; these measures are seen as predictors of
error probability in Mendling et al. (2008).  Other works demon-
strate that size is an important model factor along with additional
measures like structuredness (Mendling, 2008).

3. Threshold determination

In this section, we  determine thresholds for discriminating
process models of high and low error probability. Section 3.1 intro-
duces the hypotheses for this research. Then, Section 3.2 describes
our methodological approach based on logistic regression and ROC
curves. Section 3.3 provides an overview of the model collection
being used and the set of measures considered. Section 3.4 shows
the results of the threshold calculation.

3.1. Hypothesis

The previous discussion gives us reason to assume that pro-
cess models of higher complexity are more likely to have errors.
In essence, this proposition builds on a cognitive argument that
to analyze more complex models, more cognitive capabilities are
required. Since the human brain can process only a particular
amount of information at a time, there should also be a level of
complexity at which the likelihood of an error is significantly higher
than it is for small models. If that is the case, suitable process model
measures would be able to discriminate models of high and low
error probability, and a discriminating threshold for such measures
should exist. Accordingly, we hypothesize as follows:

H Thresholds of process model measures provide a signifi-
cant means of discriminating models of high and low error
probability.

In the following, we aim to investigate this hypothesis for vari-
ous measures.

3.2. Methodology

To test hypothesis H, we  follow a two-step approach: first, we
have to estimate the discriminator function, and second, determine
the thresholds. We  utilize logistic regression for estimating a dis-
criminator function (in which the p-value should be lower than
0.05) and ROC curves (in which the AUC value close to 0.5 indi-
cated a non-valid curve) for finding thresholds. The significance of
the AUC values is statistically checked using the Wilcoxon test of
ranks (Mason and Graham, 2002).

Logistic regression is a statistical model for estimating the prob-
ability of binary choices (Hosmer and Lemeshow, 2000). In our case,
we are interested in the binary variable hasErrors with a range
of {error, no error}. The idea of a logistic regression is that this
probability can be represented by the odds. This is the ratio of
error probability divided by probability of no error. The logistic
regression estimates the odds based on the logit function, which
is logit(pi) = ln(pi/1 − pi) = ˇ0 + ˇ1x1,i + . . . + ˇkxk,i, where ˇ0 is called

the intercept and ˇ1, ˇ2, ˇ3, and so on, are called the regression
coefficients of independent variables x1,i, x2,i, x3,i respectively. In
our case, we  will consider k process model measures as input vari-
ables and observations from i EPC process models. From the formula
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Fig. 2. Illustration of a logistic regression.

t follows that pi = (eˇ0+ˇ1x1,i+. . .+ˇkxk,i )/(1 + eˇ0+ˇ1x1,i+. . .+ˇkxk,i ). Fig. 2
hows the relationship between input and dependent variables as
n S-shaped curve converging to 0 for −∞ and to 1 for ∞.  Typically,
.5 is used as a cut-off value for predicting either event or non-
vent. Exp(ˇk) gives the factor of change for the odds if the input
ariable ˇk is incremented. Exp(ˇk) > 1 increases and Exp(ˇk) < 1
ecreases error probability.

To determine thresholds we build on an approach based on
eceiver Operating Characteristic (ROC) curves. ROC curves pro-
ide a pure index of accuracy by demonstrating the limits of a test’s
bility to discriminate between alternative states (error/non-error)
Zweig et al., 1993). For the definition of a ROC curve, we  need
wo variables: one binary (erroneous and non-erroneous model)
nd another continuous, which is the estimated error-probability
unction from the logistic regression of each measure. Each point in
he ROC curve represents a pair of sensitivity and 1 − specificity. In
his way, it represents the classification performance of any poten-
ial threshold. The determination of the best threshold builds on
he confusion matrix (Table 1), for which sensitivity and speci-
city values are calculated as follows: sensitivity = true positive (TP)
ate = TP/(TP+FN), specificity = true negative (TN) rate = TN/(FP+TN),
here FN is false negatives, FP is false positives, and TN is true neg-

tives. A true positive is found when the assessment of a measure
alue in relation to the threshold indicates that the model is likely
o have errors and that in fact it does have. On the other hand, a
alse positive indicates that the model is likely to have errors and,
ctually, it does not have. Finally, a false negative indicates that the
odel is error-free while indeed it is not.
The test performance is assessed using the Area Under the ROC

urve (AUC). AUC is a widely used measure of performance of clas-
ification (Hand, 2009). Ranging between 0 and 1, it can be used
o assess how good threshold values are at discriminating between

odels that have errors and those that do not. There are rules of
humb for assessing the discriminative power of measures based on
he AUC (Hosmer and Lemeshow, 2000). An AUC < 0.5 is considered

o good, poor if AUC < 0.6, fair if AUC < 0.7, acceptable if AUC < 0.8,
xcellent if AUC < 0.9, and outstanding if AUC ≤ 1. The standard error
r p-value is estimated using a 95% confidence interval. The test

able 1
onfusion matrix for measures and thresholds.

Actual

Classified Error Non-error

Measure ≥ threshold True-positives False-positives
Measure < threshold False-negatives True-negatives
1–Specificity

Fig. 3. Illustration of a ROC curve and threshold.

checks if the AUC is significantly different from 0.5. Accordingly,
our prior hypothesis can be operationalized for a measure m as

Hm
0 Null hypothesis: The AUC of a process model measure m

is equal to 0.5.
Hm

A Alternative hypothesis: The AUC of a process model mea-
sure m is significantly different from 0.5.

For those measures that are found to be valid according to the
hypothesis, we  can determine a threshold based on the ROC curve.
As well as sensibility and specificity values, we have to consider
two  additional aspects in the determination. First of all, the relative
costs of false results, both false negative and false positive, and the
benefits of correct classifications have to be considered. Secondly,
the relative proportions of the models to be discriminated have to
be taken into account. High sensibility is appropriate when errors
are serious and treatable, and false positives do indeed hinder the
implementation of the process.

Fig. 3 illustrates how the threshold is determined. We  need a
criterion to choose a threshold value for a measure (sensitivity,
1 − specificity pair) to balance benefits and costs. The purpose is
to maximize both values, i.e. sensitivity and specificity at the same
time (Hosmer and Lemeshow, 2000) minimizing false-positive and
false-negatives. We  use the following criterion for selecting a point
in the curve as a threshold. Without domain-specific information,
we assume sensitivity and specificity to be of equal importance.
The best threshold can then be selected by finding the point in the
curve that maximizes both sensibility and specificity. This is the
point with the greatest distance from the 0.5 diagonal.

3.3. Experimental setting

To test the hypothesis, we  use a sample of business process mod-
els from practice. This sample contains 2003 EPC business process
models stemming from four collections (Mendling, 2008). The first
collection is the SAP Reference Model.  It was developed in the 1990s
as a redocumentation of the SAP R/3 system (Keller and Teufel,
1998, p. VII). It contains 604 models. The second collection was
constructed as part of a reengineering project in the 1990s for a Ger-
man service provider with academic supervision. It includes 381 EPC

process models. The third collection was  built for an Austrian finan-
cial institution as part of a process documentation project. It covers
935 EPCs. The fourth collection contains 83 EPCs from consulting
companies.
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We  used a process analysis tool to check each model for errors
Mendling et al., 2007). This tool was also used to calculate vari-
us measures for each model. To be precise, we consider the set of
rocess model measures formally defined in Mendling (2008, pp.
17–128). These measures can be organized into five groups:

Size measures: nodes,  arcs, tasks, start-events, end-events, con-

nectors, AND-splits, AND-joins,  XOR-splits,  XOR-joins,  OR-splits,
OR-joins are all related to the number of a particular type of ele-
ments in a process model. These include counts of the number
of arcs (arcs) and nodes (nodes). The latter can be further sub-
divided into tasks on the one hand and connectors on the other
hand. The most specific counts are sub-categories of the different
types of logical connectors, like AND-splits and OR-joins.
Connection: density is the ratio of the total number of arcs in
a process model to the theoretically maximum number of arcs
(i.e. when all nodes would be directly connected). The connec-

tivity coefficient is the ratio of the total number of arcs in a
process model to the total number of its nodes. The average con-

nector degree captures the average number of both incoming
and outgoing arcs of the connector nodes in the process model.
The maximum connector degree expresses the maximum sum of
incoming and outgoing arcs of connector nodes.
Modularity: The separability is the ratio of the number of cut-
vertices divided by the total number of nodes in the process
model. The sequentiality is the degree to which the model is con-
structed of pure sequences of tasks. Structuredness captures the
extent to which a process model can be built by nesting blocks
of matching split and join connectors. Depth is the maximum
nesting of structured blocks in a process model.
Connector interplay: mismatch connector is the sum of connector
pairs that do not match with each other, e.g. when an AND-split is
followed up by an OR-join. Connector heterogenity defines the
extent to which different types of connectors are used in a process
model. control flow complexity captures a weighted sum of all
connectors that are used in a process model.
Complex behavior: Cyclicity captures the number of nodes in a
cycle and relates it to the total number of nodes. Token splits

gives the maximum number of paths in a process model that may
be concurrently initiated through the use of AND-splits and OR-
splits.
The different measures can be calculated for any EPC process
odel. Table 2 shows the values for the example model of Fig. 2.

able 2
easures’ values for the sample process model in Fig. 1.

Size
nodes 15 and-splits 0
arcs  16 and-joins 1
tasks 5 xor-splits 1
start-events 1 xor-joins 1
end-events 1 or-splits 1
connectors 4 or-joins 0
Connection
density 0.08 conn. coeff. 1.07
av.conn.degree 3 max.conn.degree 3
Modularity
separability 0.2 sequentiality 0.31
structuredness 0.6 depth 1
Connector interplay
conn. mismatch 4 cfc 4
conn. heter. 0.95
Complex behavior
cyclicity 0 token split 1
and Software 85 (2012) 1188– 1197

3.4. Threshold calculation

We  determine thresholds based on ROC curves and the Area
Under the Curve. The results of testing the null hypothesis Hm

0 for
each of the measures are summarized in Table 3. All of them are
significantly different from 0.5. According to the rules of thumb
described previously (Hosmer and Lemeshow, 2000), most of the
measures yield an acceptable value for an AUC higher than 0.7.
Several of them can be considered as excellent, if we follow the
guidelines in Hosmer and Lemeshow (2000). The values have to be
interpreted as follows. For instance, the measure nodes has an AUC
of 0.841. This means that a model randomly selected from a group
of erroneous models has in 84% of the cases more nodes than a ran-
domly selected model from a group of non-erroneous models. The
corresponding ROC curve is shown in Fig. 4, along with three fur-
ther charts of measures with an AUC exceeding 0.5. There are some
specifics to be considered for measures of separability, sequen-

tiality,  structuredness and density. These measures are inversely
correlated with the dependent variable error/no-error. This means
that the ROC curve also has to be calculated with the inverse func-
tion 1/function(x). The p-value is determined based on comparing
the AUC to a random curve (Hanley and McNeil, 1982). If the p-value
is low (p-value < 0.05), then it can be concluded that the Area Under
the ROC Curve is significantly different from 0.5 and the threshold
calculation is possible.

Apart from the test results, Table 3 also shows the thresholds
obtained from the ROC curve analysis. The thresholds indicate
which value of the corresponding measure is best able to dis-
criminate erroneous from non-erroneous models. For example, a
number of nodes higher than 31.5 or a structuredness greater
than 0.79 can be interpreted as indicators of poor design quality
as regards error probability. Due to the involvement of humans in
process modeling, one would not expect the same accuracy of pre-
dictions as in natural sciences like physics or chemistry (Morasca
and Ruhe, 1999). Therefore, it is important to reflect upon the prob-
ability of errors associated with thresholds.

These probability values can be obtained via a method proposed
by Bender in medical research (Bender, 1999). Bender’s method has
been used in toxicology and occupational epidemiology studies,
where it is interesting to find explanatory factors with a threshold
effect on a specific response variable. The method has been adapted
in other fields including software engineering (Erni and Lewerentz,
Following Bender, we can define a probability of finding errors
in models for each range of measure values. This means “if a par-
ticular measure m yields Y�[Y1, Yn], there is a Z% probability of

Table 3
Thresholds identified based on ROC curves.

Measure AUC p-Value Threshold

conn. heterogeneity 0.874 0.011 0.4
conn. mismatch 0.871 0.013 4.5
token splits 0.861 0.013 7.5
cfc  0.861 0.013 4.5
nodes 0.841 0.015 31.5
density 0.831 0.016 0.033
end-events 0.824 0.023 2.5
sequentiality 0.817 0.016 0.21
depth 0.799 0.015 0.5
max. conn. degree 0.790 0.016 3.5
coeff. connectivity 0.767 0.015 1.021
structuredness 0.766 0.025 0.79
separability 0.753 0.015 0.49
or-splits 0.739 0.024 0.5
start-events 0.736  0.024 2.5
av.  conn. degree 0.712 0.016 3.09
cyclicity 0.621  0.027 0.005
or-joins 0.567 0.026 0.5



J. Mendling et al. / The Journal of Systems and Software 85 (2012) 1188– 1197 1193

S
en
si
ti
v
it
y

1-Specificity

S
en
si
ti
v
it
y

1-Speci ficity

S
en
si
ti
v
it
y

S
en
si
ti
v
it
y

Number of Node s Connectivity Coefficient

Connector Hete rogeneit y Token Split

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0. 4 0. 6 0. 8 1.00.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0. 4 0. 6 0. 8 1.00.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0. 4 0. 6 0. 8 1.00.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0. 4 0. 6 0. 8 1.00.2

t erro

fi
d
a
a
a
i
p

T
T

1-Specificity 

Fig. 4. ROC curves abou

nding errors in that model.” Results above 89% of the measures are
epicted in Table 4. The results of this method can be interpreted
s the effect of a continuous risk factor m on a binary response vari-

ble Y. In our case, m is a measure and Y is the model that may  have
n error or not. Bender’s method defines a benchmark value, which
s a point of the curve where the risk of an event rises steeply. This
oint is called value of an acceptable risk level (VARL), where the

able 4
hresholds and probabilities of finding errors in models.

Measure Threshold Probability

token splits 7.5 19%
density 0.033 16%
sequentiality 0.21 12%
nodes 31.5 9%
structuredness 0.79 9%
or-splits 0.5 9%
conn. heterogeneity 0.4 8%
coeff. connectivity 1.021 8%
cyclicity 0.005 7%
separability 0.49 7%
av.  conn. degree 3.09 7%
cfc  4.5 7%
start-events 2.5 7%
max. conn. degree 3.5 6%
conn. mismatch 4.5 6%
end-events 2.5 5%
depth 0.5 4%
1-Specificity

r probability measures.

acceptable risk level is given by a probability p0. This value is cal-
culated as follows: VARL = p−1(p0) = (1/ˇ) × (log(p0/1 − p0) − ˛). For
values of the specific measure below VARL, the risk of an event is
lower than p0. In the VARL equation, the p0 value can be varied from
0 to 1 in order to obtain different probabilities related to different
threshold values. Table 4 shows the probability of finding errors
in models associated with each thresholds. It can be interpreted
as “if nodes does not exceed the threshold of 31.5, there is a 9%
probability of finding errors in models”.

4. Threshold validation

In this section we present findings from applying the thresholds
in a cross-validation. Section 4.1 describes the validation sample.
Section 4.2 shows results on the accuracy of predicting errors based
on the thresholds.

4.1. Cross-validation

For the validation of the thresholds, we used a dataset consisting
of 429 EPC process models sourced from an Australian insurance
company under condition of anonymity. These models capture

the way  the company handles insurance claims for the various
insurance products they offer, e.g. house insurance, motor vehicle
insurance, and worker’s compensation insurance. Within this com-
pany, these models are used at a conceptual level for requirement
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Table 5
Average and standard deviation measure values of the insurance company sample.

� � � �

Size
nodes 27.1 28.9 and-splits 0.35 1.52
arcs 26.3  30.9 and-joins 0.07 0.30
tasks 7.69 14.5 xor-splits 2.60 3.17
start-ev. 3.29  3.61 xor-joins 1.63 1.66
end-ev. 4.14 4.58 or-splits 0 0
connectors 5.04 5.42 or-joins 0 0
Connection
density 0.06  0.04 conn. coeff. 0.91 0.18
av.c.degree 3.27 1.32 m.c.degree 4.56 2.79
Modularity
separability 0.49 0.22 seq. 0.35 0.27
struct. 0.91 0.08 depth 0.62 0.61
Connector interplay
c. mismatch 3.98 5.42 cfc 6.92 8.31
c.  heter. 0.13 0.22
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Conn. Mismatc h

Depth

CFC

Av. Conn. Degree

Cycli city

Separability

Max. Conn. Degree

End-Events

Sequentiality

Start-Events

Token  Spli t

Precision
Complex behavior
cyclicity 0.04 0.11 token split 0.39 1.68

nalysis and for communication purposes. Bearing all this in mind,
t should be remarked that some of these models are at a very high-
evel of abstraction, while others also include information about
artners, IT resources and organizational policies.

Table 5 shows the average and standard deviation measure val-
es for this collection of EPC models. The models of the insurance
re significantly larger than the models that we used for determin-
ng the thresholds: while the prior sample has on average 20 nodes,
he insurance models have 27 nodes. It is also interesting to note
hat OR-connectors are not found in the insurance sample. This is
he consequence of a design guideline, which forbids the usage of
R-connectors. Most of the insurance models are highly structured
structuredness of 0.91) and contain hardly any loops (cyclicity of
.04). It should also be noted that the nesting structure is rather flat
depth of 0.62). We  used the same process analysis tool as before
o check each model for errors (Mendling et al., 2007). We  found 20

odels with errors such as deadlocks, which yields an error rate of
.66%.

.2. Prediction

We approached the cross-validation of the thresholds from an
nformation retrieval perspective. In this field of research true and
alse positives as well as true and false negatives are used as the
asis for calculating precision and recall measures for assessing
he quality of a search result (Baeza-Yates and Ribeiro-Neto, 1999).
recision is the ratio of true positives to the sum of true and false
ositives. In terms of error prediction, this is the ratio of correctly
ound erroneous models based on a threshold value in relation to
he sum of all error predictions. Recall is the ratio of true positives
o the sum of true positives and false negatives, i.e. the ratio of cor-
ectly found erroneous models to the sum of all erroneous models.
his measure is calculated similarly to sensitivity, which is used to
lot ROC curves. Although sensitivity and specificity, and precision
nd recall are calculated in a similar way, they have different pur-
oses: sensitivity and specificity are used for plotting ROC curves,
hile recall and precision are used to check the quality of measure

hresholds. Furthermore, we will discuss the accuracy, which is the
ercentage of correctly classified models.

The precision and recall result from applying the thresholds to
rror prediction in the insurance sample are shown in Fig. 5. Struc-

uredness has the best precision of 23%, followed by nodes,  coeff
 connectivity, density, conn. heterogeneity,  and conn. mismatch

hat all have a precision of 10–13%. This set of measures is in the
iddle tier in terms of recall ranging from 55% to 70%. Structured-

ess only achieves a recall of 30%. It is interesting to note that the
Recall

Fig. 5. Precision and recall values for considered thresholds.

other measures which are rather weak in precision yield high recall
values. An exception is the measures of complex behavior: cyclic-

ity and token split have both low precision and recall values. Most
of the cases have a high recall with a low precision, which means
all the models with errors were selected by thresholds but several
non-erroneous models were also selected. This implies that identi-
fying error or non-erroneous models by means of only one measure
is not enough. Several measures should be considered jointly.

From an accuracy perspective, three groups can be distin-
guished. In the first tier, token split, structuredness, cyclicity, and
connector heterogeneity all have an accuracy greater than 80%.
It must be noted though that token split did not yield any true
positive. The second group including nodes,  coefficient of connec-

tivity,  density, and connector mismatch are accurate with more
than 75%. All other measures have an accuracy of less than 55%.

5. Discussion

In this section, we  discuss the derived thresholds and their val-
idation. Section 5.1 investigates the implications of this work for
research and practice. Finally, Section 5.2 discusses threats to valid-
ity.

5.1. Implications for research and practice

The findings reported in this paper have implications for the role
of measures in process modeling. To be more specific, the derived
thresholds bear the potential to define modeling guidelines in a

more precise way.

General guidelines of process modeling such as SEQUAL
(Krogstie et al., 2006) or the Guidelines of Modeling (Becker et al.,
2000) have been available for some time. Recent work in this area
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Table 6
Ten process modeling rules.

Rule Associated
measure

Explanation

G1 Nodes Do not use more than 31
G2 Conn. degree No more than 3 inputs or outputs per connector
G3 Start and end Use no more than 2 start and end events
G4.a Structuredness Model as structured as possible
G4.b Mismatch Use design patterns to avoid mismatch
G5.a OR-connectors Avoid OR-joins and OR-splits
G5.b Heterogeneity Minimize the heterogeneity of connector types
G5.c Token split Minimize the level of concurrency
J. Mendling et al. / The Journal of Sys

as aimed to define guidelines in a more quantitative and opera-
ional way, as well as to base them on empirical evidence. The seven
rocess modeling guidelines are a result of these efforts. These
uidelines formulate the following modeling directives (Mendling
t al., 2010):

1 Use as few elements in the model as possible.
2 Minimize the routing paths per element.
3 Use one start and one end event.
4 Model as structured as possible.
5 Avoid OR routing elements.
6 Use verb-object activity labels.
7 Decompose a model with more than 50 elements.

In general, the thresholds found in this paper confirm the guide-
ines, and are more specific. Guideline G1 is confirmed by the
hreshold we found for nodes.  Apparently, having a process model
ith fewer than 31 nodes still appears acceptable. Beyond this

hreshold, the probability of finding errors increases from 9% to
00% according to Bender’s value at risk. In the validation, this
hreshold yielded 13% precision and 70% recall with an overall
ccuracy of classification of 78%.

Guideline G2 suggests minimizing the routing paths of each con-
ector. This is confirmed by the thresholds for average connector

egree and maximum connector degree, neither of which should
e greater than 3. Beyond this threshold, there is an error proba-
ility of 7% and 6%, respectively. While both measures had a high
ecall in the validation sample of more than 80%, they provide only

 limited precision of less than 10%.
Guideline G3 recommends using one start and one end event.

he thresholds we found suggest that having two start and two  end
vents is still fine in terms of not being too error-prone. Beyond
his threshold, there is still a medium error probability of 5% and
%. Interestingly, the end-event measure provides a much better
ecall in the validation sample (80%) than the start-event measure
40%). This is surprising since several classes of control flow errors
an be traced back directly to badly connected start events (Decker
nd Mendling, 2009). These figures apparently reflect the fact that
tart events are used in a structured way in the insurance sample.
s a result, the start and end measures do not yield accurate results

n the validation.
Guideline G4 emphasizes the importance of structured model-

ng. This guideline is confirmed by the threshold of 0.79. Beyond this
alue, we observed an error probability of almost 10%. While struc-

uredness has a recall of only 30%, it has by far the best precision
f roughly 25% for the insurance sample. The overall accuracy of
rediction is greater than 90%. The central importance of this mea-
ure is therefore confirmed by our study. In order to avoid problems
ith structuredness, it seems desirable to use well-formed design
atterns (van der Aalst et al., 2003; Wohed et al., 2006). This obser-
ation is further emphasized by the connector mismatch measure.
t has the second largest AUC value of about 87% and shows a good
alance of precision and recall in the validation sample.

Guideline G5 suggests avoiding OR-connectors. Indeed, the
hreshold we find confirms that the number of OR-splits and OR-
oins should be below 1. OR-splits appear to be more critical
epending on their AUC value. There is a 9% error probabil-

ty when the threshold is passed. This makes sense since paths
temming from OR-splits need special attention in how they are
ynchronized. In contrast, OR-joins can be used with all kinds
f splits without any harm. Indeed, we find this guideline con-
rmed by the fact that the modelers in the insurance company

ere not allowed to use OR-connectors. The criticality of connector

nterplay is further emphasized by the connector heterogene-

ty measure and its threshold of 0.4. Where OR-connectors are
voided, the maximum of this measure drops from 1 down to
G6 Text Use verb-object activity labels
G7 Nodes Decompose a model with more than 31 nodes

−(0.5 × log3 0.5 + 0.5 × log3 0.5 + 0) = 0.63. In the validation sample,
this measure showed a good balance between precision and recall
with an overall accuracy of 81%. Finally, there is also support for
this argument from the token split measure, although its precision
and recall were low. It has a high AUC of 86%, and the error proba-
bility is 19% beyond the 7.5 threshold. There was no true-positive in
the insurance sample as the two models beyond this value did not
have errors. Still, as all control flow errors relate to concurrency and
synchronization, it appears to be a good strategy for minimizing it.

Rule G6 refers to activity labels, which were not considered in
this paper. Guideline G7 can be refined based on the threshold
found for nodes:  a model should already be decomposed once it
has more than 31 nodes. As a result of these discussions, we give a
summary of a refined list of ten process modeling rules in Table 6.

5.2. Threats to validity

With regards to internal validity, there can be several challenges
to determining appropriate threshold values. Often, not all factors
can be controlled (Churchill and Doerge, 1995). In our case, we
did not have access to information on the modeling expertise of
those who created the models of our sample. Accordingly, we asso-
ciated the threshold values with a quantitative risk assessment
(Bender, 1999). It is also problematic that many statistical tech-
niques require a significant set of input parameters to be set, which
can sometimes lead to unrealistic values. The technique used in this
paper, namely ROC curves with AUC, has many advantages in this
regard. It is objective in the sense that a user does not need to set any
parameter value. However, it also has some weaknesses. For exam-
ple, one particular curve may  have a larger AUC (that is apparently
better) even though the alternative may  show superior perfor-
mance over almost the entire range of values of the classifications
threshold. That said, however, it has an intuitive interpretation as a
strength: it is the average sensitivity of a classifier under the assump-
tion that one is equally likely to choose any value of the specificity,
under the assumption of a uniform distribution over specificity (Hand,
2009).

In relation to external validity, we  focus on verification sup-
port, navigation aids, and modeling expertise. All the models that
we included in this study were created using modeling tools that
do not provide explicit support for checking soundness and con-
ducting other kinds of verification. This means that the thresholds
reflect the situation where a modeler tries to create correct models
without any specific tool support for it. Once efficient verification
and correction aids such as Fahland et al. (2011) and Gambini et al.
(2011) become available in modeling tools, we can assume that the
thresholds are less relevant for predicting errors. It is even more

likely that, they will indicate the potential rework effort that is
required to yield a correct model.

Finally, even for tools without verification support there are dif-
ferent levels of navigation support. The importance of highlighting
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nd layout is emphasized in various studies (Ware et al., 2002;
eijers et al., 2011). The models we used were laid out nicely.

n case, modeling tools do not support or enforce effective lay-
ut, the likelihood of encountering errors might be higher than
he thresholds suggest. Indeed, most professional modeling tools
nclude algorithms for auto-layout and help of positioning elements
orrectly right from the start.

We mentioned above that process modeling expertise is an
mportant factor for model understanding (Recker and Dreiling,
007; Reijers and Mendling, 2011). In the same vein, the thresh-
lds obtained in this paper are dependent upon the expertise of the
odelers who created the model collections of this study. While we

o not have access to the demographics of the modelers involved,
e have some evidence that the models have been created at least
artially, by modeling experts. Both the SAP Reference Model and
he models from consultancies were created to sell the models. The

odels of the German service provider were created with academic
upervision. Hence, we may  assume that the quality of the models
sed in this study reflects industrial standards.

. Conclusions

In this paper a set of thresholds for business process model
easures have been proposed in order to predict errors. A dataset

omposed of 2003 EPC models was used to extract the thresholds
ystematically. Furthermore, we used a collection of 429 EPC mod-
ls of an Australian financial institution for validation. As a result
ome meaningful thresholds were obtained for evaluating aspects
hat included size, connection, modularity, and connector inter-
lay of the models. For complex behavior (cyclicity and token
plit) it was not possible to obtain reliable thresholds, as they
ielded low precision and recall values. The obtained thresholds
ere applied to find quantitative support to the seven process
odeling guidelines.
Mapping modeling guidelines with threshold values makes it

ossible to support the decision making process by suggesting
mprovement actions for modelers. The research presented in this
aper can thus also serve as a guide to other researchers and
ractitioners so they can build indicators (measures with decision
riteria) from validated measures. Thresholds for error prediction
n EPC models can also serve as a starting point for application
n practice, and they should be continuously gauged by compa-
ies according to feedback obtained from the practical experience
erived from its usage. In future work, we also aim to investigate the
otential of improving precision. Current precision values may  be
oo low for some scenarios like workflow design. In particular, we
ant to look into discriminant analysis, a statistical tool that might
elp defining indicators based on several measures. Future work
ill aim to further validate the thresholds by using other collections

f process models from different business areas, complementing
he thresholds obtained with expert opinions, and applying the
pproach to other business process modeling notations. In future
ork, we also aim to investigate the potential of improving preci-

ion. Current precision values may  be too low for some scenarios
ike workflow design. In particular, we want to look into discrimi-
ant analysis, a statistical tool that might help defining indicators
ased on several measures.
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